Fitting a model to concentration data and estimating the slope
Source:R/flux_fitting.R
flux_fitting.Rd
fits gas concentration over time data with a model (exponential, quadratic or linear) and provides the slope later used to calculate gas fluxes with flux_calc
Usage
flux_fitting(
conc_df,
conc_col,
datetime_col,
f_start = f_start,
f_end = f_end,
f_fluxid = f_fluxid,
start_cut = 0,
end_cut = 0,
t_window = 20,
cz_window = 15,
b_window = 10,
a_window = 10,
roll_width = 15,
t_zero = 0,
fit_type
)
Arguments
- conc_df
dataframe of gas concentration over time
- conc_col
column with gas concentration data
- datetime_col
column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_fluxid only the first row will be kept
- f_start
column with datetime when the measurement started
- f_end
column with datetime when the measurement ended
- f_fluxid
column with ID of each flux
- start_cut
time to discard at the start of the measurements (in seconds)
- end_cut
time to discard at the end of the measurements (in seconds)
- t_window
enlarge focus window before and after tmin and tmax (exponential fit)
- cz_window
window used to calculate Cz, at the beginning of cut window (exponential fit)
- b_window
window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exponential fit)
- a_window
window at the end of the flux to estimate a (exponential fit)
- roll_width
width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exponential fit)
- t_zero
time at which the slope should be calculated (for quadratic fit)
- fit_type
exponential
,quadratic
orlinear.
Exponential is using the exponential model from Zhao et al (2018)
Value
a dataframe with the slope at t zero (f_slope
),
a datetime column of t zero (f_start_z
), a factor column indicating the
cuts (f_cut
), the time in seconds since the start of the measurement
(f_time
), the modeled fit (f_fit
), the modeled slope (f_fit_slope
),
the parameters of the fit depending on the model used,
and any columns present in the input.
The type of fit is added as an attribute for use by the other functions.
References
Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022
Examples
data(co2_conc)
flux_fitting(co2_conc, conc, datetime, fit_type = "exp")
#> Cutting measurements...
#> Estimating starting parameters for optimization...
#> Optimizing fitting parameters...
#> Calculating fits and slopes...
#> Done.
#> Warning:
#> fluxID 5 : slope was estimated on 205 points out of 210 seconds
#> fluxID 6 : slope was estimated on 206 points out of 210 seconds
#> # A tibble: 1,251 × 23
#> datetime temp_air temp_soil conc PAR turfID type
#> <dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
#> 1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
#> 2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
#> 3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
#> 4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
#> 5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
#> 6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
#> 7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
#> 8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
#> 9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
#> 10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
#> # ℹ 1,241 more rows
#> # ℹ 16 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
#> # f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>, f_Cz <dbl>,
#> # f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>, f_slope <dbl>, f_fit <dbl>,
#> # f_fit_slope <dbl>, f_start_z <dttm>
flux_fitting(co2_conc, conc, datetime, fit_type = "quadratic",
t_zero = 10, end_cut = 30)
#> # A tibble: 1,251 × 24
#> datetime temp_air temp_soil conc PAR turfID type
#> <dttm> <dbl> <dbl> <dbl> <dbl> <fct> <fct>
#> 1 2022-07-28 23:43:35 NA NA 447. NA 156 AN2C 156 ER
#> 2 2022-07-28 23:43:36 7.22 10.9 447. 1.68 156 AN2C 156 ER
#> 3 2022-07-28 23:43:37 NA NA 448. NA 156 AN2C 156 ER
#> 4 2022-07-28 23:43:38 NA NA 449. NA 156 AN2C 156 ER
#> 5 2022-07-28 23:43:39 NA NA 449. NA 156 AN2C 156 ER
#> 6 2022-07-28 23:43:40 NA NA 450. NA 156 AN2C 156 ER
#> 7 2022-07-28 23:43:41 NA NA 451. NA 156 AN2C 156 ER
#> 8 2022-07-28 23:43:42 NA NA 451. NA 156 AN2C 156 ER
#> 9 2022-07-28 23:43:43 NA NA 453. NA 156 AN2C 156 ER
#> 10 2022-07-28 23:43:44 NA NA 453. NA 156 AN2C 156 ER
#> # ℹ 1,241 more rows
#> # ℹ 17 more variables: f_start <dttm>, f_end <dttm>, f_fluxid <fct>,
#> # f_ratio <dbl>, f_flag_match <chr>, f_time <dbl>, f_cut <fct>,
#> # f_param1 <dbl>, f_param2 <dbl>, f_rsquared <dbl>, f_adj_rsquared <dbl>,
#> # f_intercept <dbl>, f_pvalue <dbl>, f_slope <dbl>, f_fit <dbl>,
#> # f_fit_slope <dbl>, f_start_z <dttm>