R/bootstrap_traits_parametric.R
trait_parametric_bootstrap.Rd
Function for parametric bootstrap resampling to calculate community weighted trait mean and higher moments.
trait_parametric_bootstrap(
fitted_distributions,
nrep = 100,
sample_size = 200,
raw = FALSE
)
Fitted distribution object returned by trait_fit_distributions
number of bootstrap replicates
bootstrap size
logical; argument to extract the raw data of the
trait distributions.
The default is raw = FALSE
.
If raw = TRUE
, nrep
is restricted to 1 to avoid
memory issues.
a tibble
trait_parametric_bootstrap()
is a parametric analogue of the
trait_np_bootstrap()
.
It randomly samples from among the fitted distributions
proportionally to species abundance.
The number of samples per replicated are drawn
specified with the parameter sample_size,
and the number of replicates is specified
by the parameter nrep
.
From these distributions the function estimates the mean
and the higher moments including variance, skewness and kurtosis.
The output of trait_parametric_bootstrap()
can be summarized using
trait_summarize_boot_moments()
.
library(dplyr)
data(community)
data(trait)
# Filter trait and community data to make example faster
community <- community |>
filter(
PlotID %in% c("A", "B"),
Site == 1
)
trait <- trait |>
filter(Trait %in% c("Plant_Height_cm"))
filled_traits <- trait_fill(
comm = community,
traits = trait,
scale_hierarchy = c("Site", "PlotID"),
taxon_col = "Taxon", value_col = "Value",
trait_col = "Trait", abundance_col = "Cover"
)
fitted_distributions <- trait_fit_distributions(
filled_traits = filled_traits,
distribution_type = "normal"
)
# Note that more replicates and a greater sample size are advisable
# Here we set them low to make the example run quickly
parametric_distributions <- trait_parametric_bootstrap(
fitted_distributions = fitted_distributions,
nrep = 5,
sample_size = 100
)
moment_summary <- trait_summarise_boot_moments(
bootstrap_moments = parametric_distributions,
parametric = FALSE
)