Skip to contents

indicates if slopes should be discarded or replaced by 0 according to quality thresholds set by user

Usage

flux_quality(
  slopes_df,
  fit_type = c(),
  ambient_conc = 421,
  error = 100,
  fluxid_col = "f_fluxID",
  slope_col = "f_slope",
  force_discard = c(),
  force_ok = c(),
  ratio_threshold = 0,
  pvalue_col = "f_pvalue",
  rsquared_col = "f_rsquared",
  pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  conc_col = "f_conc",
  b_col = "f_b",
  time_col = "f_time",
  fit_col = "f_fit",
  cut_col = "f_cut",
  rmse_threshold = 25,
  cor_threshold = 0.5,
  b_threshold = 1,
  cut_arg = "cut"
)

Arguments

slopes_df

dataset containing slopes

fit_type

model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using flux_fitting()

ambient_conc

ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)

error

error of the setup, defines a window outside of which the starting values indicate a polluted setup

fluxid_col

column containing unique IDs for each flux

slope_col

column containing the slope of each flux (as calculated by the flux_fitting function)

force_discard

vector of fluxIDs that should be discarded by the user's decision

force_ok

vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag

ratio_threshold

ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations

pvalue_col

column containing the p-value of each flux (linear and quadratic fit)

rsquared_col

column containing the r squared of each flux (linear and quadratic fit)

pvalue_threshold

threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fit)

rsquared_threshold

threshold of r squared value below which the linear model is considered an unsatisfactory fit (linear and quadratic fit)

conc_col

column containing the measured gas concentration (exponential fit)

b_col

column containing the b parameter of the exponential expression (exponential fit)

time_col

column containing the time of each measurement in seconds (exponential fit)

fit_col

column containing the modeled data (exponential fit)

cut_col

column containing the cutting information

rmse_threshold

threshold for the RMSE of each flux above which the fit is considered unsatisfactory (exponential fit)

cor_threshold

threshold for the correlation coefficient of gas concentration with time below which the correlation is considered not significant (exponential fit)

b_threshold

threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough (exponential fit)

cut_arg

argument defining that the data point should be cut out

Value

same dataframe with added quality flags and corrected slope column

Examples

data(slopes0lin)
flux_quality(slopes0lin, fit_type = "li")
#> 
#>  Total number of measurements: 6
#> 
#>  ok 	 1 	 17 %
#>  zero 	 5 	 83 %
#>  discard 	 0 	 0 %
#>  weird_flux 	 0 	 0 %
#>  start_error 	 0 	 0 %
#>  no_data 	 0 	 0 %
#>  force_ok 	 0 	 0 %
#> # A tibble: 1,251 × 27
#>    f_datetime          temp_air temp_soil f_conc   PAR turfID       type 
#>    <dttm>                 <dbl>     <dbl>  <dbl> <dbl> <fct>        <fct>
#>  1 2022-07-28 23:43:35    NA         NA     447. NA    156 AN2C 156 ER   
#>  2 2022-07-28 23:43:36     7.22      10.9   447.  1.68 156 AN2C 156 ER   
#>  3 2022-07-28 23:43:37    NA         NA     448. NA    156 AN2C 156 ER   
#>  4 2022-07-28 23:43:38    NA         NA     449. NA    156 AN2C 156 ER   
#>  5 2022-07-28 23:43:39    NA         NA     449. NA    156 AN2C 156 ER   
#>  6 2022-07-28 23:43:40    NA         NA     450. NA    156 AN2C 156 ER   
#>  7 2022-07-28 23:43:41    NA         NA     451. NA    156 AN2C 156 ER   
#>  8 2022-07-28 23:43:42    NA         NA     451. NA    156 AN2C 156 ER   
#>  9 2022-07-28 23:43:43    NA         NA     453. NA    156 AN2C 156 ER   
#> 10 2022-07-28 23:43:44    NA         NA     453. NA    156 AN2C 156 ER   
#> # ℹ 1,241 more rows
#> # ℹ 20 more variables: f_start <dttm>, f_end <dttm>, f_fluxID <fct>,
#> #   n_conc <dbl>, ratio <dbl>, flag <chr>, f_time <dbl>, f_cut <fct>,
#> #   f_pvalue <dbl>, f_rsquared <dbl>, f_adj_rsquared <dbl>, f_intercept <dbl>,
#> #   f_slope <dbl>, f_fit <dbl>, f_n_conc <int>, f_ratio <dbl>,
#> #   f_flag_ratio <chr>, f_start_error <chr>, f_quality_flag <chr>,
#> #   f_slope_corr <dbl>
data(slopes30)
flux_quality(slopes30, fit_type = "expo", slope_col = "f_slope")
#> 
#>  Total number of measurements: 6
#> 
#>  ok 	 6 	 100 %
#>  discard 	 0 	 0 %
#>  zero 	 0 	 0 %
#>  weird_flux 	 0 	 0 %
#>  start_error 	 0 	 0 %
#>  no_data 	 0 	 0 %
#>  force_ok 	 0 	 0 %
#> # A tibble: 1,251 × 39
#>    f_datetime          temp_air temp_soil f_conc   PAR turfID       type 
#>    <dttm>                 <dbl>     <dbl>  <dbl> <dbl> <chr>        <chr>
#>  1 2022-07-28 23:43:35    NA         NA     447. NA    156 AN2C 156 ER   
#>  2 2022-07-28 23:43:36     7.22      10.9   447.  1.68 156 AN2C 156 ER   
#>  3 2022-07-28 23:43:37    NA         NA     448. NA    156 AN2C 156 ER   
#>  4 2022-07-28 23:43:38    NA         NA     449. NA    156 AN2C 156 ER   
#>  5 2022-07-28 23:43:39    NA         NA     449. NA    156 AN2C 156 ER   
#>  6 2022-07-28 23:43:40    NA         NA     450. NA    156 AN2C 156 ER   
#>  7 2022-07-28 23:43:41    NA         NA     451. NA    156 AN2C 156 ER   
#>  8 2022-07-28 23:43:42    NA         NA     451. NA    156 AN2C 156 ER   
#>  9 2022-07-28 23:43:43    NA         NA     453. NA    156 AN2C 156 ER   
#> 10 2022-07-28 23:43:44    NA         NA     453. NA    156 AN2C 156 ER   
#> # ℹ 1,241 more rows
#> # ℹ 32 more variables: f_start <dttm>, f_end <dttm>, f_fluxID <dbl>,
#> #   n_conc <dbl>, ratio <dbl>, flag <lgl>, f_time <dbl>, f_cut <chr>,
#> #   Cm_est <dbl>, a_est <dbl>, b_est <dbl>, tz_est <dbl>, f_Cz <dbl>,
#> #   time_diff <dbl>, f_Cm <dbl>, f_a <dbl>, f_b <dbl>, f_tz <dbl>,
#> #   f_slope <dbl>, f_fit <dbl>, f_fit_slope <dbl>, f_start_z <dttm>,
#> #   f_n_conc <int>, f_ratio <dbl>, f_flag_ratio <chr>, f_start_error <chr>, …